

Mass Spectrometry 101 and Beyond

Steve Slahck
Specialist
Waters Corporation
Stephen_slahck@waters.com
B16-650-6225

Introduction and History LC/MS(/MS)

What is a mass spectrometer (MS)?

An instrument that measures masses of particles

- Forensic Labs
 - City, County, State, FBI
- Hospitals
 - Neonatal Testing
 - Anti-Rejection Therapy
- Universities
- Government Agencies
 - EPA, FDA, USDA, USGS
 - -CDC
 - ATF, TSA
 - State Labs, e.g., Agriculture
 - US Army, NASA
- Private Industry
 - Contract Labs

Who Uses It?

What specifically does an MS measure and display?

A particle's mass to charge ratio (m/z)

- The m in m/z is the molecular or atomic mass.
- The z represents the charge(s) carried by the ion.
- A molecule of mass 1000 carrying 2 charges will be observed at 1000/2 or 500 *m/z or m/z 500*.

What unit is used for mass here?

(historically)

Atomic Weight is a relative scale without explicit units.

- ≻1803 John Dalton ¹H = 1.00
- ≻1906 Wilhelm Ostwald H = 1/16 O
- ▶1929 Oxygen Isotope is discovered ¹⁶O became amu where amu is atomic mass unit
- >1961 ¹²C was the relative u "unified atomic mass unit"
- ➤1993 IUPAC tentative approval of the dalton (da)
- ≥2005 IUPAC endorses the dalton
- 2006 International System of Units (SI) called dalton a non-SI unit.
- >2009 ISO didn't help
- >2010 Oxford University Press style guide Dalton, Da or kDa

What must happen for m/z to be measured?

- > Sample must be loaded into an MS somehow.
- > There is some type of vaporization step.
- > The components of the sample must then be ionized.
- > The ions must be separated by their m/z ratio.
- > The ions then must be detected, often quantitatively.
- > The ion signal must be processed into mass spectra.

What are the basic components of a mass spectrometer?

Waters

Sample Introduction and Ionization

EI Mass Spectrum of Warfarin

EI Mass Spectrum of Dioctyl Phthalate

CI Mass Spectrum of Dioctyl Phthalate

Jet Separator

In 1969, LC eluate at 1 μ L/min was put into a jet separator.

Jet Separator

In 1981, Moving Belt Interface

Thermospray LC/MS

Waters

ElectroSpray Ionization

ESI

2002 Nobel Prize

- It was the interface of ESI to MS that allowed widespread use in clinical laboratories
- John Fenn and Koichi Tanaka
 - Nobel Prize in Chemistry 2002
 - "for the development of methods for identification and structure analyses of biological macromolecules"
 - "for their development of soft desorption ionization methods for mass spectrometric analyses of biological macromolecules"

Formation of Charged Droplets

Waters THE SCIENCE OF WHAT'S POSSIBLE."

After formation the ions are drawn through an electric field or potential gradient through a drying gas to the counter plate.

Electrospray Ionization Mechanisms of Ion Formation

Negative Electrospray Ions

Electrospray Ionization Z-spray Ion Source

Robustness and Reliability – Z Spray™

GroEL – 800KDa

Waters

Electrospray process:

Summar

- Ionization of analyte in solution
- Droplet fission and desolvation
- Production of gaseous ions
- "Soft Ionization"
 - Little fragmentation produced by the ESI process
- Adducting and multiply charging is common
- Sensitivity is compound and matrix dependent
- Types of analyte amenable to ESI
 - Must be able to ionize in solution
 - Wide range of masses (<100Da >30,000Da)
 - Small molecules tend to produce singly charged ions
 - Larger molecules tend to produce multiply charged ions

APCI – Atmospheric Pressure Chemical Ionization

In 2000, Atmospheric Pressure Chemical Ionization (APCI, APCi)

- APCI process:
 - Flash vaporization of solvent and analyte
 - Gas phase chemical ionization
- More harsh ionization than ESI
 - Fragmentation is more likely than with ESI due to high temperatures and corona discharge involved
- Adducting is common, but multiply charging of compounds is rare
- Sensitivity is compound and matrix dependent
- Types of analyte amenable to APCI
 - Must be volatile to some degree
 - Smaller range of masses than ESI(<1000Da)
- Additives used have less effect on the ionization than in ESI

Waters

ESI / APCI

Lonization modes: ESI and APCI

Waters THE SCIENCE OF WHAT'S POSSIBLE

ESI

- Polar compounds
- Multiple-charging occurs
- Proteins/peptides/nucleic acids
- Molecular weight determination
- Appropriate for both volatile and non-volatile solutes
- Good sensitivity
- Especially Na⁺ K⁺ and NH₄⁺ adducts are common

APCI

- Non-polar compounds
- Mostly single charging
- Non-polar small molecules
- Molecular weight determination
- Accommodates LC flow rates up to 2.0 mL/min
- Good sensitivity
- Solvent adducts common

APPI – Atmospheric Pressure Photo Ionization

APPI Concept

Waters

Direct APPI

 $-M + h\nu \rightarrow M^{+.} + e^{-}$

Analyte molecule is ionized to a molecular radical ion if ionization potential is below the energy of the photon

 $- M^+ + Solvent \rightarrow MH^+ + [Solvent-H]^-$

In the presence of protic solvents, $\mathsf{M}^{\scriptscriptstyle +}$ may abstract a hydrogen atom to form $\mathsf{MH}^{\scriptscriptstyle +}$

Dopant APPI

 $-D + h\nu \rightarrow D^{+.} + e^{-}$

A photoionizable dopant is delivered in large concentration to yield many D⁺ ions.

 $- D^+ + M \rightarrow MH^+ + [D-H]^-$

 $D^+ + M \rightarrow M^+ + D$

Dopant ions ionize the analyte by either proton or electron transfer
APPI Selectivity

Can be very useful for:

- PolyNuclear Aromatics
- Steroids
- Bio-oils/Biodiesel
- Plasticizers
- Polymers

APPI is complementary to ESI and APCI by detecting compounds missed by these sources

Waters

- APPI process:
 - Flash vaporization of solvent and analyte
 - Gas phase photoionization (or PI induced CI...)
- Soft ionization technique

- Summar

- Fragmentation less common than APPI due to lack of a corona discharge area
- Mainly singly charged parent ions produced
- Sensitivity is compound and matrix dependent
- Dopants often used to enhance sensitivity
- Types of analyte amenable to APPI
 - Must be volatile to some degree
 - Smaller range of masses than ESI(<1000Da)
 - Can ionize some very non-polar compounds not amenable to either ESI or APCI

Ionization Coverage

Vacuum

Roughing or Rotary (vane) Pump (wet)

- Low vacuum
- Change oil 6 12 months
- Vent off-gasses
- Rebuildable
- Somewhat Noisy

Waters

THE SCIENCE

OF WHAT'S POSSIBLE."

Scroll Pump (dry)

- Low vacuum
- Large footprint
- Oil-less
- Seal Change annually
- Seal Change requires care
- Quiet
- 2-3x Price of Rotary

Turbomolecular (Turbo) Pump

Waters THE SCIENCE OF WHAT'S POSSIBLE

- High Vacuum
- Oil-less
- Air cooled
- Quiet usually
- Fairly Expensive
- Potential MS Damages when they rail

Vacuum Regions on Single Quadrupole Instruments

Mass Filters

ass Analyzers: Quadrupoles vs TOF

Waters THE SCIENCE OF WHAT'S POSSIBLE

Quadrupoles

- Common identification of unknowns, especially by GC electron impact library
- Quantitation
- Single and Tandem (triple)
- High sensitivity
 - Nominal Mass (only first decimal place significant
- Limited on mass range
- High selectivity

Time-of-Flight (TOF)

- Unknown identifications by empirical formulas
- High resolution
 - Exact or Accurate Mass
- No limit on mass range
- High resolution fragments (after CID)
- Incorporate quadrupoles for precursor selections
- Simultaneous Quantitation
 with Qualitative now possible

Magnetic Sector Analyzer

Waters

Introduced in 1897 by J. J. Thompson

In 1989, Wolfgang Paul received the Nobel Prize.

- Ion traps are ion trapping devices that make use of a 3-D quadrupole field to trap and mass-analyze ions
- Nominal mass resolution
- 1/3 rule limitation
- Challenging quantitation
- Space charge effects

Detectors

- > Electron Multiplier EM
 - Cascading Dynode
 - Continuous Dynode
- > Photomultiplier PM or PMD
- Microchannel Plate MCP

Cascading Dynode EM

Electron Multipliers

Electron Multipliers

Waters

CONTINUOUS DYNODE EM

Constant Autogain 12 – 18 months lifetime

Photomultiplier Detection (PMD)

LC/MS (or GC/MS)

Single Quad Modes of Acquisition

*Very compound dependent"

Analyte Injected in Matrix

LC/MS/MS

Differences between Single and Tandem Quadrupole Instruments

Product (Daughter) Scan MRM – Multiple Reaction Monitoring

Waters THE SCIENCE OF WHAT'S POSSIBLE.

- Selected ions are transmitted through Q1
- Fragmented in the collision cell
- Q3 is then scanned over a defined mass range
- A mass spectrum of the product ions generated by fragmentation is acquired at each time point throughout the acquisition.
- The most common MRM experiment

Analyte Injected in Matrix

Waters

MRM versus SIM

ESI + LC/MS Spectrum for Methamidophos

ESI + LC/MS/MS Spectrum for Methamidophos Woters

Daughter or Product Masses

Product (Daughter) Scan MRM – Multiple Reaction Monitoring

Waters THE SCIENCE OF WHAT'S POSSIBLE

- Selected ions are transmitted through Q1
- Fragmented in the collision cell
- Q3 is then scanned over a defined mass range
- A mass spectrum of the product ions generated by fragmentation is acquired at each time point throughout the acquisition.
- This is the most common MRM experiment

Precursor (Parent) Scan MRM – Multiple Reaction Monitoring

Waters THE SCIENCE OF WHAT'S POSSIBLE."

- Q1 is scanned over a specified mass range and
- All ions are sequentially passed through to the collision cell where they are fragmented
- Q3 is set to transmit only the mass of a specific fragment ion and does not scan
- No mass spectra are generated by this MRM experiment
- Monitoring a chemical series e.g., barbituates, sulfonamides

(constant) Neutral Loss

Waters

- Q1 is scanned over a specified mass range and
- All ions are fragmented in the collision
- Q3 is scanned in sync with Q1 over the same mass range minus an offset
- A response is only seen if a precursor ion loses a neutral fragment in the collision cell of the same mass to charge ratio as the offset between Q1 and Q3, e.g., 35 m/z (chlorine)

Chromatography is to separate out mixtures by retention time.

Mass spectrometry is to separate out mixtures by mass.

Good analytical chemistry is to use both.

Remember -

Just because a mixture of chemicals have the same elution chromatographically, doesn't mean that they cannot be totally separated by mass. Screening Waters

Xevo TQ-S World's Most Sensitive MS

Atmospheric Pressure Solids Analysis Probe

ASAP

Waters Atmospheric Solids Analysis Probe

Glass Capillary Tube

Inner Probe Inserted into Outer Assembly

- Waters
- A solids analysis probe for atmospheric pressure ionization (API) sources
 - Fast
 - No sample preparation
 - No chromatographic separation
 - Simple Construction
 - Low cost analysis
- Suitable for volatile and semi-volatile solid and liquid samples
- Data from non-polar samples normally not seen using API
- Good alternative to GC solids probe (no vacuum lock)
- Enclosed source (safety)

ASAP Overview

Waters

ASAP Probe with Baffle and ESCi Corona Pin

Forensics

- Analysis of unknown tablets / counterfeits
- Analysis of inks

Pharmaceuticals

- Molecular weight confirmation in drug discovery
- Formulated products
- Metabolites in urine

Fine Chemicals

Impurity profiling

Food Safety

Adulteration of food

Environmental

Polynuclear aromatic hydrocarbon contaminants

Petrochemical

 Analysis of complex samples including polymers and polymer additives (in conjunction with Synapt G2-S HDMS)

Synthesis

Raw Material Assays

Mechanism of Ionization (I)

Charge Transfer

- "Dry" source conditions
- Favoured by relatively non-polar compounds

Mechanism of Ionization (II)

Proton Transfer

- Modified source conditions for example with water or methanol present
- Favoured by relatively polar compounds

camples of Different ionization Mechanisms Analysis of Steroid Progesterone

75

100

125

50

150

175

progesterone- no lock ref 1: TOF MS AP+ 314.2247 1.75e4 100 Charge transfer Calculated mass for radical cation dry source $M^{+.} = 314.2241$ 315.2311 % 316.2354 272.2143 169.0892 [™] m/z 0+ 100 150 200 250 300 50 350 progesterone 1: TOF MS AP+ 315.2334 7.61e4 100-Proton transfer Calculated mass for protonated molecule solvent in source $[M+H]^+ = 315.2324$ %-316.2373 0+ $\neg m/z$

225

250

275

300

325

350

200

THE SCIENCE OF WHAT'S POSSIBLE."

Waters

Urine sample from patient after dosing with paracetamol (1000mg) and dihydrocodeine (30mg)

Identification of inks on paper

Waters THE SCIENCE OF WHAT'S POSSIBLE."

paper before introducing into source

Polynuclear aromatic hydrocarbons

Waters

Analysis of Cooking Oils

Extra virgin olive oil

Rapeseed oil

Waters

Extra virgin olive oil

aters

THE SCIENCE

AT'S POSSIBLE."

Detection of oleocanthal in extra virgin olive oil

Pesticides in Wheat Target Strobilurins

Waters

Dimoxystrobin

ö

NH

OCH₃

,OCH₃

Azoxystrobin

 \cap

`CH₃

ĊH₃

ĊH₃

Picoxystrobin

ö

CF₃

.CN

The Food and Environment Research Agency

EU MRLs = 0.02 - 0.3mg/kg in wheat

Azoxystrobin Fungicide on Wheat Whole Grain (430µg/kg)

Verapamil 10-10,000ng/mLno internal standard

Waters

Compound name: Verapamil Correlation coefficient: r = 0.992187, $r^2 = 0.984435$ Calibration curve: 0.570819 * x + -10.6168 Response type: External Std, Area Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Formulated tabletsscraping from tablet surface

Which are Genuine? Which are Counterfeit?

synthetic phosphodiesterase type-5 (PDE-5) inhibitors used in the treatment of erectile dysfunction

13 Tablet Samples with no sample extraction or chromatographic separation

- 1) Genuine Brand Sildenafil
- 2) Internet Pharmacy "Brand" Sildenafil
- 3) Internet Pharmacy A "Brand" Sildenafil
- 4) Internet Pharmacy A "Brand" Vardenafil
- 5) Internet Pharmacy A "Brand" Tadalafil
- 6) "Generic" Sildenafil
- 7) Genuine Brand Tadalafil
- 8) Genuine Brand Vardenafil
- 9) "Generic" Sildenafil
- 10) "Generic" Tadalafil
- 11) "Generic" Vardenafil
- 12) "Generic" Sildenafil
- 13) "Generic" Tadalafil

VVaters

ASAP/TOF MS Data for Genuine Brand Samples Counterfeit Internet Pharmacy Samples

THE SCIENCE OF WHAT'S POSSIBLE."

iters

Counterfeit Medicine

Applications

Waters

6 Water soluble

amins b

6 Fat soluble

Acidic Herbicides in Drinking Water - ppq

Collection of Whale Blow (snot)

500 fg of Cortisol and Progesterone

Chro

Waters

Analysis of 25 Blow Samples

	Cortisol		Progesterone	
Sample code	Area	pg/µL	Area	pg/µL
4975_244	3429	5.4	36408	5.6
4975_245	3348	5.3	35529	5.5
4975_246	3332	5.3	35025	5.4
4975_247	3354	5.3	35474	5.5
4975_248	3290	5.2	35758	5.5
%RSD	1.5	%RSD	1.4	

Table 3. Repeatability data for cortisol and progesterone at 5 pg/uL.

Cortisol and progesterone levels in the whale blow samples.

Exact Mass Accurate Mass

Introduction - Terminology

Waters THE SCIENCE OF WHAT'S POSSIBLE

- Every element found in nature has a unique mass
- Elements are combined to produce compounds with distinct masses and physical properties
- Compounds can be detected by mass spectrometry and thus their masses measured
- If a compound mass can be measured with sufficient accuracy, a unique elemental composition can be inferred – the benefit of exact mass

The Fundamentals of Mass

- carbon has a mass of 12
- hydrogen
 has a mass of 1
- oxygen has a mass of 16
- nitrogen has a mass of 14

But these are nominal (integer, whole) units

The Fundamentals of Mass

- carbon has a mass of 12.0000
- hydrogen has a mass of 1.0078
- oxygen has a mass of 15.9949
- nitrogen has a mass of 14.0031

- It is possible to have combinations of atoms which have the same nominal (or integer) mass but different accurate mass
- If such compounds can be mass measured with sufficient accuracy it is possible to determine elemental composition

- CO = 27.9949
- $N_2 = 28.0061$
- $C_2H_4 = 28.0313$
- These elemental combinations have the same nominal mass but different exact mass.
- A nominal mass measurement cannot distinguish these.
- If any compounds differ in their elemental compositions by substitution of any of these elements, then the exact mass measurement will show this.

- Most elements have more than one stable isotope.
 - For example, most carbon atoms have a mass of 12 Da, but in nature, 1.1% of C atoms have an extra neutron, making their mass 13 Da (¹³C).
- Why do we care?
 - Mass spectrometers can register isotope peaks if their resolution is high enough.
 - If a instrument has resolution high enough to resolve these isotopes, better mass accuracy is achieved.

Exact Mass and Isotopic Abundance of Common Elements

Element		Nominal Nuclide	Exact Mass	Mass Defect	Isotopic Abundance
Hydrogen	H	1	1.0078	0.00783	100.00%
	D	2	2.0141	0.0141	0.02%
Carbon	C ¹²	12	12.0000	0	100.00%
	C ¹³	13	13.0034	0.00336	1.10%
Nitrogen	N ¹⁴	14	14.0031	0.003074	100.00%
	N ¹⁵	15	15.0001	0.0001	0.37%
Oxygen	O ¹⁶	16	15.9949	-0.0051	100.00%
	O ¹⁷	17	16.9991	-0.0009	0.04%
	O ¹⁸	18	17.9992	-0.0008	0.20%
Fluorine	F ¹⁹	19	18.9984	-0.0016	100.00%
Phosphorus	P ³¹	31	30.9738	-0.0262	100.00%

CONFIDENT COMPOUND ID

DIFFERENT COMPOUND SELECTIVITY

COMPLETE LACK OF ANALYTICAL STANDARDS

MEASUREMENT OF COLLISIONAL CROSS SECTIONS

GAS PHASE CONFORMATIONAL STUDIES

POLYMER STUDIES

LARGE MASS STUDIES

PROTEOMICS

METABOLOMICS

METABONOMICS

LIPIDOMICS

mAb QUALITY CONTROL

Thanks for your attention.

Questions?